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ABSTRACT 
 

Duchenne and Becker muscular dystrophy (DMD) is a chronic debilitating and progressive muscle-

wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation 

and premature death. As a result of mutations in the DMD gene (encoding dystrophin), muscle dystrophin 

production is abolished. Dystrophic muscles are more susceptible to damage, resulting in progressive 

weakness and cardiomyopathy. Detailed understanding of the mutational spectrum of the DMD gene is 

fundamental to genetic counseling, prenatal diagnosis, and selection of suitable patients for mutation-

specific treatments in the future. However, a molecular diagnosis with accuracy and convenience is 

difficult, due to the immense size of the dystrophin gene and the diversity of causative mutations. 

Traditional methods of diagnosing DMD, including multiplex ligation-dependent probe amplification and 

Sanger sequencing, need multiple steps and have many flaws. A stop codon read-through approach and 

exon-skipping are the most promising therapeutic options to date for the treatment of DMD. To use either 

of these approaches, a very precise identification of the mutational status of the DMD gene must be made 

in patients with DMD. Identifying the causal variation in DMD within this difficult-to-diagnose group 

necessitated using novel contemporary methods. This Primer provides a comprehensive introduction to the 

practice of next-generation sequencing technologies for a more detailed characterization of the mutational 

spectrum within the human dystrophin gene. 
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1. INTRODUCTION 
Muscular dystrophy is a group of hereditary disorders that cause skeletal muscle deterioration and weakness 

(Bushby et al. 2010). In muscular dystrophy, the damage of strong muscle fibers (2) and reinforcement with fat and 

fibrosis occurs with time (Aartsma-Rus et al. 2019; Alfano et al. 2019), causing muscle tissues to be less capable of 

generating force for ordinary activities (Bello and Pegoraro, 2019; Birnkrant et al. 2018). During the process of 

muscle wasting, patients suffer from weakness, although specific muscular dystrophies can affect different muscle 

groups (Bylo et al. 2020). If mechanical support is not provided (Doorenweerd et al. 2014), respiratory failure may 

limit the lifespan of muscular dystrophy (Hugnot et al. 1992). The heart can also be affected by some forms of 

muscular dystrophy, leading to cardiac complications, including heart failure (Duan 2018).  

Duchenne is caused by a mutation on the dystrophin X gene chromosome is a main form of Dystrophy and 

characterized by continuous weakness and damage of muscles (Duboc et al. 2005; Hoffman et al. 1987). Boys with 

DMD often fail their capability to walk around the time of puberty and exhibit indications of muscular weakness as 

early as infancy, usually between the ages of 2 and 7 (Caskey et al. 1980). In most cases, wheelchair dependency 

occurs between 10 and 12 years old and supported ventilation begins at the age of 20 (Aartsma-Rus et al. 2016). It 

is estimated that a maximum of patients with DMD will die between the ages of 20 and 40 due to respiratory and 

cardiac failure, even with optimal care (Brison et al. 2019). 

 

1.1. Dystrophin: Gene and Protein 

In August 1987, positional cloning yielded the first successful DMD gene identification on the X chromosome, 

which opened the door to new directions in the study. Investigations of exceptional female DMD patients with 
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stable X and autosomal translocations with the translocation division at Xp21 allowed researchers to pinpoint the 

gene's location to Xp21 (14). A DNA marker confirms the localization of the disease, revealing that it shares an 

allelic relationship with milder, similar-clinical disease, Becker muscular dystrophy (BMD) (Monaco et al. 1988). 

However, the gene was discovered by utilising a patient with a significant deletion who also had DM and four other 

X-linked disorders. The dystrophin gene comprising 79 exons spans about 2,200kb, unevenly 0.1% of the human 

genome (Birnkrant et al. 2018). There is a wide distribution of the DMD locus transcribed (14-kb mRNA), mostly 

in cardiac and skeletal muscles, and a smaller amount in the brain (Birnkrant et al. 2018; Helderman‐van Den 

Enden et al. 2009). Since dystrophy results from its absence were given the name dystrophin produced by this 

protein product.  

After the discovery of the DMD gene, many different mutations arise (Hugnot et al. 1992). In the present study 

of 7149 DMD patients, 79% had huge mutations, 68% of which were large deletions, and 11% had large 

duplications. Only 21% of the patients had minor changes, and 50% of them were nonsense mutations. 5%, 2%, and 

3% of the population had minor insertions, deletions, and splice site alterations, respectively (Doorenweerd et al. 

2014). Stimulatingly, the removed exons are often bunched in sections 43-55. Only a small percentage of patients 

have these hot spot sites. Mutation rates for exon 53 (10.1%), 51 (14%), exon 45 (9%), exon 44 (7.1%) and exon 43 

(7.5%) are the highest, according to a large-scale study (Moser 1984; McNally et al. 2015). De-novo mutations are 

frequent in DMD and BMDB; de-novo germline alterations account for one-third of individuals' cases of DMD and 

BMDB (Iyombe-Engembe et al. 2016). In addition, due to germline mosaicism, mothers with children with DMD 

or BMDB who do not have DMD mutations are at risk of producing another child with the same condition, which is 

a percentage of her oocytes, is present). Sperm or oocyte germline mosaicism occurs in various individuals, but it 

can be as much as 14% (Moura et al. 2015; Bettica et al. 2016). 

 

1.2. Diagnosis 

A prompt and precise diagnosis of DMD is important for treatment. Since 2010, there has been no significant 

change in the method for diagnosing DMD (Brenman et al. 1995). When indicative symptoms and indications are 

seen, such as clumsiness, toe waliking, difficulty ascending stairs, weakness, and a gowers sign often start in early 

infancy (Bylo et al. 2020). It is possible to avoid diagnostic delays by promptly referring a patient to a 

neuromuscular specialist, assisted by a geneticist or genetic counsellor. Occasionally, the judgment is completed 

due to progressive elevated and delayed serum enzymes, like lactate dehydrogenase, alanine aminotransferase, 

creatine kinase, or aspartate aminotransferase (Birnkrant et al. 2018). It can be difficult to tell the difference 

between increased liver enzymes and DMD. However, an elevated ALT, AST, or concentration of lactate 

dehydrogenase, sometimes causes an incorrect emphasis on hepatic dysfunction, and diagnosis of DMD is delayed 

(Capogrosso et al. 2018; Duchêne et al. 2018). This is especially true when these increases are accompanied by 

increased bilirubin levels. The most common form of DMD is a gene deletion or duplication, in which a single or 

multi-exon region of the dystrophin gene is missing (Skuk et al. 2006). About 70% of people with DMD have this 

loss or duplication, thus it is often the first confirming test. The deletions were detected by multiplex PCR, the 

optimum testing methods are comparative genomic hybridization array or multiplex ligation-dependent probe 

amplification (MLPA) (De Palma et al. 2014). Using MLPA or a comparative genomic hybridization array may 

determine if a deletion or duplication mutation has boundaries that cause the reservation or dislocate the reading 

frame. If testing for duplication or deletion is negative, genetic sequencing should be carried out to check for the 

outstanding mutation types that are thought to account for 25–30% of DMD cases. These abnormalities, which 

comprise point mutations (missense or nonsense), little duplication, tiny deletions, small insertion, and duplication, 

may be found using next-generation sequencing (Aartsma-Rus and Goemans 2019). When everything else fails, 

genetic testing may be supplemented by western blotting or immunohistochemistry of tissue cryosections to 

confirm the clinical diagnosis of DMD (Wood et al. 2014). 

 

1.3. Female Carriers 

Genetic counselling should be provided to family members of a person with DMD to determine who is likely to 

be a carrier (Chamberlain et al. 1992). Female relative should be advised for carrier testing who has been diagnosed 

with DMD genetically. The American Medical Association's ethical rules for genetic testing of children should be 

followed if the relative is a minor (Eagle et al. 2007). Female carriers who are found have various options for 

conception, such as prenatal genetic testing or preimplantation genetic diagnosis via amniotic fluid or chorionic 

villus collection (Tuffery‐Giraud et al. 2009). 

 

1.4. Newborn Screening 

The measurements of the creatine kinase level from dried blood spots were initially demonstrated in the middle 

of the 1970s (34). In a recently described two-tier newborn screening diagnostic approach, samples that showed a 
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creatine kinase concentration elevation were subsequently examined for mutations in the dystrophin gene (Mendell 

et al. 2012). The Recommended Uniform Screening Panel, which is mostly restricted to neonatal-onset illnesses for 

whom early treatment indicates a better prognosis, does not contain DMD (Wood et al. 2014). However, some 

countries have carried out neonatal DMD screening trials (Wood et al. 2014). However, the majority of these 

studies have been stopped (Mendell et al. 2012; Gatheridge et al. 2016). Though support from stakeholders and the 

possibility that newly developed DMD medicines would be most successful if they are started before symptoms 

have rekindled interest in newborn screening (Mendell et al. 2012; Moat et al. 2017).  

 

1.5. Evolution of Various DMD Diagnostic Methods 

1.5.1. Multiplex PCR: Multiplex PCR is one of the patients' most promising tools for detecting DMD. It has been 

used to diagnose various genetic disorders, including DMD, cystic fibrosis, sickle cell anaemia and haemophilia 

(Frank et al. 2020). Multiplex PCR is frequently used in clinical studies to aid in discovering genetic variations. 

Multiplex PCR is currently used in targeted massively parallel sequencing (MPS) as an intrinsic part (Janssen et al. 

2005). MPS is utilized in clinical laboratories as a genetic variation detection tool because of its speed and accuracy 

(36). There are various advantages of using multiplex PCR, including systematic protocol development, fast 

experimentation, and an accurate and efficient variant detection process (Satre et al. 2004). Multiplex PCR is thus 

extensively employed in medical and biomedical studies, despite its drawbacks, which include poor amplification 

efficiency for longer fragments, and poor specificity and sensitivity of certain specific targets dependent on the 

case. Multiple studies have used multiplex PCR to detect deletions in DMD patients (Chelly et al. 1990). For 

example, Murugan et al. found deletions in 103 DMD patients out of 150 that they believed to be affected 

(Crescimanno et al. 2019). In addition to identifying nine mutations via MLPA, Kumar et al. recently discovered 

deletion mutations in DMD affecting 30 exons. This study was conducted on 996 patients who were considered to 

be DMD patients. Only 623 of these patients had deletions identified via multiplex PCR. Additional deletions were 

detected through MLPA in 92 patients (De Palma et al. 2012; McDonald et al. 2017).  

 

1.5.2. Multiplex Ligation-dependent Probe Amplification: In 2002, Schouten developed multiplex ligation-

dependent probe amplification (MLPA) (Brison et al. 2019). It is currently employed to detect Duchenne muscular 

dystrophy (DMD) and is used as an initial screening test in clinical settings (Aartsma-Rus and Goemans 2019). It is 

a simple, economical, and sensitive technique that is available as an in vitro diagnostic assay (MRC Holland 

SALSA MLPA Probe mixes P034 and P035) for a reduced price (Bylo et al. 2020). A variety of pioneering studies 

have examined all 79 DMD gene exons using MLPA, a well-established technique, to detect genetic variations 

(deletions and duplications) (Garcia et al. 2014). These studies have shown that MLPA can detect additional genetic 

mutations in DMD patients, including intragenic deletions and carrier status detection using multiplex PCR as the 

first line of diagnostic testing (Gatheridge et al. 2016). MLPA can only detect large deletions/duplications (Satre et 

al. 2004). However, it is incapable of detecting small insertions/deletions and point mutations (Thangarajh et al. 

2019). As a result, NGS technologies were developed to detect small variants.  

 

1.5.3. Next-Generation Sequencing: Small pathogenic variants, including missense, nonsense, small insertions and 

deletions, indel, and splicing, can be identified by NGS (Barlow and Ellard 2006) (Khalid 2022). The DMD gene 

(which includes 79 exons and intronic flanking sequences) is composed of a large number of indels. NGS can detect 

variants that MLPA cannot, therefore serving as the next or second line of DMD testing (Bradley et al. 1972; Eagle 

et al. 2007). The first-generation sequencing method was frequently used to sequence all DMD exons individually 

(Wasala et al. 2018). Although it is costly and time-consuming, it has high accuracy. Later, Sanger sequencing was 

replaced by new NGS approaches to decrease experiment costs and time. Sanger sequencing can sequence only one 

exon per experiment, whereas NGS can accomplish a large number of targets in parallel in different patients at once 

(Frank et al. 2020). It has been described that the whole DMD gene has been sequenced in addition to exons, 

introns, and promoters. Several NGS techniques, such as amplicon-based, whole genome, whole-exome 

sequencing, and DMD gene-targeted analysis, have been used thus far. Long-Read sequencing technologies, such as 

Pacific Biosciences and Oxford Nanopore Technologies, can detect Structural Variants, Single Nucleotide Variants 

(SNVs), and Single-Molecule Barcoding (SMB) (Wasala et al. 2018). Researchers recently used a 10x Linked-Read 

sequencing strategy to study the DMD gene, which combines single-molecule barcoding with short-read WGS 

(Goemans et al. 2018). In this instance, MLPA was used to analyse a female muscular dystrophy carrier with an 

undetermined genetic status, which could not detect exon deletions (Dumont et al. 2015). However, linked-read 

WGS could distinguish the two X chromosomes (Haenggi et al. 2005). The linked-read WGS method should be 

considered a valuable tool for understanding unresolved genetic conditions (Mendell et al. 2020). NGS might be 

used as a single comprehensive platform to detect mutations and diagnose DMD. 16-29 deletions were identified in 

the first allele, whereas the second allele had a 1-34 duplication, indicating that linked-read WGS should be 

https://doi.org/10.47278/journal.abr/2023.035


 Review Article                                                 Agrobiological Records 

   ISSN: 2708-7182 (Print); ISSN: 2708-7190 (Online) 

 Open Access Journal 

 

 
Citation: Hamid M and Zafar MZ, 2023. Next generation sequencing application in Duchenne muscular dystrophy (DMD): 

diagnostic evolution, mutation analysis and challenges. Agrobiological Records 14: 30-36. 

https://doi.org/10.47278/journal.abr/2023.035 

 33 

considered a valuable method to detect unresolved genetic conditions (56). Recognition of cryptic splice sites or 

pseudo-exon insertion in mature transcripts, which leads to complex rearrangements, can evade level 1 and 2 DNA-

based testings (40). RNA-based sequencing methods may be used to detect these escape variants. Micro-fluidic 

exome array can be sequencing DMD RNA and assess multiple splicing events (Holloway et al. 2008). It also 

provides the complete DMD mRNA sequence, including all exon-exon junctions. Technical difficulties in research 

have been identified in DMD variants from various tissues (blood, muscles, stem cells, and extracellular RNA from 

urine (Johnson et al. 2012). The presence of low amounts of illegitimate transcripts characterizes technical 

difficulties in the study. along with NGS-based RNA-seq, may encourage therapeutic approaches for DMD (Frank 

et al. 2020). 

 

1.5.4. NGS Data Analysis: The amount of data produced by NGS platforms is vast. Bioinformaticians with 

expertise must handle and analyse massive amounts of data. The reads are often provided in raw format by 

sequencing via NGS, including FASTQ or other raw sequence file formats (such as BCL, SFF, HDF5, bam, 

SOLID, etc. Pre-processing is an initial and crucial stage in bioinformatic analysis. A quality check (QC) is carried 

out on these pre-processed reads to obtain accurate and error-free reads (Kodippili et al. 2018). The downstream 

analysis can vary depending on the objectives of projects and scientific inquiries (Pinto Leite et al. 2018). The 

reference DMD gene is matched against DMD sequencing reads produced using the Sanger technique to identify 

causal mutations (Kieny et al. 2013). Only high-quality bases are mapped on DMD after the base calls are examined 

to determine the base-quality value before alignment (Doorenweerd 2020). 

Additionally, methods like WGS and RNA-seq have been employed to find harmful DMD mutations (McNally 

et al. 2015). As previously noted, high-quality readings are obtained by filtering reads produced by WGS/WES 

methods. The GRCh38 reference genome is used to map high-quality reads to find SNVs, CNVs, and tiny indels. 

These discovered variations are contrasted with variants found in databases such as the Genome Aggregation 

Database (gnomAD) (MacArthur Lab, n.d.), dbSNP, ClinVar (Yu et al. 2017). Other tools, such as the Manta tool, 

may also be utilised depending on the requirements to find split read irregularities in the DMD. To verify the 

structural rearrangements, the probable DMD variants are ultimately manually examined using Integrative Genome 

Browser (IGV) (Uttley et al. 2018). RNA-seq reads are processed through quality checks similarly to WGS reads 

(Patel et al. 2018). These reads are matched against the reference genome using a two-step alignment method using 

a spliced aligner, such as STAR 2-Pass, and GENCODE is used for annotation. It removes unannotated junctions in 

the first step and identifies novel junctions (Wasala et al. 2020). 

 

1.5.5. NGS Data Analysis Challenges: The American College of Medical Genetics and Genomic (ACMG) divides 

the variations into four categories: harmful, probably pathogenic, and presumably benign (Nance et al. 2019). A 

significant amount of data is produced by NGS. Therefore, managing and storing data properly presents the first 

challenge. NGS data offers tens of thousands of variations (Wasala et al. 2018). The significance of the majority of 

the identified variants is assessed using data from mutation databases like the ClinVar database, Genome 

Aggregation Database (gnomAD), dbSNP, and Human Gene Mutation Database (HGMD), as well as information 

from the literature and clinical observations (Nance et al. 2019). Numerous losses of function variants in the human 

genome with unclear relevance complicate the interpreting process (Voit et al. 2017). Therefore, one of the key 

difficulties in diagnosing complex features is identifying the pathogenic and clinically important variants. 

Additionally, interpreting expected markers necessitates software, tools, and algorithms, all of which need a 

significant amount of computer power (Uttley et al. 2018). To put it briefly, it is an expensive and difficult task to 

turn pathogenic genetic data into a diagnostic tool. It also requires the confirmation of variations, the expertise of 

professional bioinformaticians, a bioinformatics infrastructure, genetic counseling, and integration of all of them. 

By overcoming these obstacles, NGS technology can eventually become a single, all-inclusive tool for DMD 

diagnosis and mutation identification. 

 

2. Conclusion 
Currently, the most popular and successful method for the routine diagnosis of DMD is the targeted 

resequencing of genes of interest. The first-tier diagnostic for genetically varied illnesses such as skeletal muscle 
disorders will soon be exome and genome sequencing due to the declining cost of NGS and technological 
advancements. Genetic information will probably be available before other test results and during the patient's first 
clinical assessment because of the quick turnaround times of such procedures. The NGS industry is developing 
quickly, and new strategies are being developed to obtain long reads for sequencing longer contiguous chunks of 
DNA. Long-read sequencing approaches enhance the identification of longer repetitive components, copy number 
alterations, and structural variants by circumventing the length constraint of earlier NGS techniques. Using single-
molecule real-time sequencing technology, provided the first sequence data for extended CGG-repeat FMR1 alleles, 
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proving the practicality of such a long-read strategy for the diagnosis of triplet repeat disorders. For viral and 
malignant illnesses, RNA sequencing technologies are also becoming powerful diagnostic and prognostic tools. 
Similar techniques are already being used to evaluate the differentially expressed genes of known disease-causing 
transcripts, and they will probably soon be used to diagnose hereditary illnesses. The vast amount of data produced 
will aid in understanding the cellular and molecular mechanisms causing diseases of the skeletal muscle as well as 
the association between genotype and phenotype. These are the obligatory first steps toward potential therapeutic 
strategies. 
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